Design and Simulation of a New Lower Exoskeleton for Rehabilitation of Patients with Paraplegia
نویسندگان
چکیده
The paper proposes a new architecture for a lower exoskeleton with five degrees of freedom (DOF) per each leg, where, the design and synthesis of the kinematic chains is based on human leg parameters in terms of ratios, range of motion, and physical length. This research presents the design and simulation of lower limb exoskeleton for rehabilitation of patients with paraplegia. This work presents close equation for the forward and inverse kinematics by geometric and Denavit-Hartenberg (D-H) approach. Also, the dynamic model is approached by applying the principle of Lagrangian dynamics. The paper contains several simulations and numerical examples to prove the analytical results.
منابع مشابه
Conceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملEffect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance
Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...
متن کاملEconomic Evaluation of Rehabilitation of Spinal Cord Injury patients in Iran in 2019
Objectives: Despite the various available evidence that rehabilitation interventions are effective for spinal cord injury patients, these interventions usually impose costs on the health system. Therefore, it is necessary to examine the cost-effectiveness of these interventions for the health system of countries through economic evaluation. Based on this, in this study, we have examined the cos...
متن کاملHeart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia.
UNLABELLED Historically, persons with paralysis have limited options for overground ambulation. Recently, powered exoskeletons have become available, which are systems that translate the user's body movements to activate motors to move the lower limbs through a predetermined gait pattern. As part of an ongoing clinical study (NCT01454570), eight nonambulatory persons with paraplegia were traine...
متن کاملDesign and Development of Cable Driven Upper Limb Exoskeleton for Arm Rehabilitation
this paper describes the design and kinematic analysis of a 5 DOF upper limb powered robotic exoskeleton for rehabilitation of the patients who survived stroke and the elderly who do not have enough strength to move their limbs freely. It was observed that the existing upper extremity exoskeletons were bulky and heavy which made them limited to applications and the complexity of the system incr...
متن کامل